Conditional Stochastic Simulations of Flow and Transport with Karhunen-Loève Expansions, Stochastic Collocation, and Sequential Gaussian Simulation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed multi-agent Gaussian regression via Karhunen-Loève expansions

We consider the problem of distributedly estimating Gaussian random fields in multi-agent frameworks. Each sensor collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed to have limited computational and communication capabilities and to gather M noisy measurements in total on input locations independently drawn from a known comm...

متن کامل

Gaussian Processes : Karhunen - Loève Expansion , Small Ball

In this dissertation, we study the Karhunen-Loève (KL) expansion and the exact L small ball probability for Gaussian processes. The exact L small ball probability is connected to the Laplace transform of the Gaussian process via Sytaja Tauberian theorem. Using this technique, we solved the problem of finding the exact L small ball estimates for the Slepian process S(t) defined as S(t) = W (t+a)...

متن کامل

The Distributed, Partial, And Conditional Karhunen-Loève Transforms

The Karhunen-Loève transform (KLT) is a key element of many signal processing tasks, including approximation, compression, and classification. Many recent applications involve distributed signal processing where it is not generally possible to apply the KLT to the signal; rather, the KLT must be approximated in a distributed fashion. This paper investigates such distributed approximations to th...

متن کامل

Karhunen - Loève expansions of mean - centered Wiener processes

For γ > − 1 2 , we provide the Karhunen-Lò eve expansion of the weighted mean-centered Wiener process , defined by Wγ (t) = 1 √ 1 + 2γ W t 1+2γ − 1 0 W u 1+2γ du , for t ∈ (0 , 1 ]. We show that the orthogonal functions in these expansions have simple expressions in term of Bessel functions. Moreover , we obtain that the L 2 [ 0 , 1 ] norm of Wγ is identical in distribution with the L 2 [ 0 , 1...

متن کامل

Adaptive Stroud Stochastic Collocation Method for Flow in Random Porous Media via Karhunen-Loève Expansion

In this paper we develop a Stochastic Collocation Method (SCM) for flow in randomly heterogeneous porous media. At first, the Karhunen-Loève expansion is taken to decompose the log transformed hydraulic conductivity field, which leads to a stochastic PDE that only depends on a finite number of i.i.d. Gaussian random variables. Based on the eigenvalue decay property and a rough error estimate of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2014

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2014/652594